Developmental Adaptation of Central Nervous System to Extremely High Acetylcholine Levels
نویسندگان
چکیده
Acetylcholinesterase (AChE) is a key enzyme in termination of fast cholinergic transmission. In brain, acetylcholine (ACh) is produced by cholinergic neurons and released in extracellular space where it is cleaved by AChE anchored by protein PRiMA. Recently, we showed that the lack of AChE in brain of PRiMA knock-out (KO) mouse increased ACh levels 200-300 times. The PRiMA KO mice adapt nearly completely by the reduction of muscarinic receptor (MR) density. Here we investigated changes in MR density, AChE, butyrylcholinesterase (BChE) activity in brain in order to determine developmental period responsible for such adaptation. Brains were studied at embryonal day 18.5 and postnatal days (pd) 0, 9, 30, 120, and 425. We found that the AChE activity in PRiMA KO mice remained very low at all studied ages while in wild type (WT) mice it gradually increased till pd120. BChE activity in WT mice gradually decreased until pd9 and then increased by pd120, it continually decreased in KO mice till pd30 and remained unchanged thereafter. MR number increased in WT mice till pd120 and then became stable. Similarly, MR increased in PRiMA KO mice till pd30 and then remained stable, but the maximal level reached is approximately 50% of WT mice. Therefore, we provide the evidence that adaptive changes in MR happen up to pd30. This is new phenomenon that could contribute to the explanation of survival and nearly unchanged phenotype of PRiMA KO mice.
منابع مشابه
HYPERVITAMINOSIS A-INDUCED CENTRAL NERVOUS SYSTEM DEFECTS
In this investigation the effects of excess vitamin A administration during the early embryonic period were studied. Intramuscular injection of a single dose of 15000,20000 or 25000 IU/kg vitamin A to pregnant Balb/c strain mice on either day 7,8,9 or 10 of gestation (vaginal plug= day 0 of gestation) produced major malformations in the central nervous system (CNS) including exencephaly, h...
متن کاملThe metabolism of acetylcholine in the intact central nervous system of an insect (periplaneta americana l.).
The insect central nervous system is known to be remarkably insensitive to applied acetylcholine. This effect was first demonstrated in the terminal abdominal ganglion of the cockroach when it was shown that synaptic transmission was unaffected by concentrations of up to io~ M acetylcholine in the bathing solution (Roeder, 1948). This level of acetylcholine is more than two orders higher than t...
متن کاملReview of the Aspergillosis and Report A Case of its Central Nervous System
SUMMARY Because Aspergillus SP. are one of the most common airborne fungal contaminants in all parts of the world, the incidence of Aspergillosis is relatively high, but will not be diagnosed in some cases. In this survey we decided to review the importance of Aspergillosis and also to report a case of its Central Nervous system involvement in a patient without Immunodeficiency.
متن کاملCentral and Metabolic Effects of High Fructose Consumption: Evidence from Animal and Human Studies
Fructose consumption has increased dramatically in the last 40 years, and its role in the pathogenesis of the metabolic syndrome has been implicated by many studies. It is most often encountered in the diet as sucrose (glucose and fructose) or high-fructose corn syrup (55% fructose). At high levels, dietary exposure to fructose triggers a series of metabolic changes originating in the liver, le...
متن کاملP176: Neurological Diseases: Causes, Symptoms and Treatments
The nervous system is an extremely complex communication system that can send and receive large amounts of information simultaneously. The nervous system has two distinct parts: the central nervous system (the brain and the spinal cord) and the peripheral nervous system (the nerves located outside the brain and spinal cord). The main unit of the nervous system is neural cells (neurons). The rou...
متن کامل